A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems

نویسندگان

  • NIALL MADDEN
  • MARTIN STYNES
چکیده

A coupled system of two singularly perturbed linear reaction–diffusion two-point boundary value problems is examined. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analysed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh central differencing is proved to be almost first-order accurate, uniformly in both small parameters. Supporting numerical results are presented for a test problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-publicaciones Del Seminario Matematico 2008 an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction- Diffusion Systems an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction-diffusion Systems *

In this work we consider a parabolic system of two linear singularly perturbed equations of reaction-diffusion type coupled in the reaction terms. The small values of the diffusion parameters, in general, cause that the solution has boundary layers at the ends of the spatial domain. To obtain an efficient approximation of the solution we propose a numerical method combining the Crank-Nicolson m...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Two-grid algorithms for singularly perturbed reaction-diffusion problems on layer adapted meshes

We propose a new two-grid approach based on Bellman-Kalaba quasilinearization [6] and Axelsson [4]-Xu [30] finite element two-grid method for the solution of singularly perturbed reaction-diffusion equations. The algorithms involve solving one inexpensive problem on coarse grid and solving on fine grid one linear problem obtained by quasilinearization of the differential equation about an inter...

متن کامل

A parameter–uniform finite difference method for a singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type

A singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type with given boundary conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These parameters are assumed to be distinct. The components of the solution exhibit overlapping layers. Shishkin piecewise-uniform meshes are introduced, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002